Zbroj kocki i njihova razlika: formule smanjene množenja

Matematika je jedna od onih znanosti bez kojih je postojanje čovječanstva nemoguće. Gotovo svaka akcija, svaki proces uključuje korištenje matematike i njegovih elementarnih akcija. Mnogi veliki znanstvenici uložili su velike napore kako bi ova znanost olakšala i razumljivija. Različiti teoremi, aksiomi i formule omogućuju učenicima da brže vide informacije i primjenjuju znanje u praksi. Međutim, većina ih se pamti tijekom njihovog života.

sadržaj

    zbroj kockica

    Najprikladnije formule koje učenicima i učenicima omogućuju nositi se s divovskim primjerima, frakcijama, racionalnim i neracionalnim izrazima su formule, uključujući skraćenu umnožavanje:

    1. iznosi i razlika u kockama:

    a3 - t3 - razlika;

    k3 + l3 - iznos novca.

    2. Formula kocke zbroja, kao i kocka razlike:

    (f + g)3 i (h-d)3

    3. razlika kvadrata:

    z2 - v2;

    4. Kvadrat zbroja:

    (n + m)2 i tako dalje.

    Formula zbroja kockica gotovo je najteže zapamtiti i reproducirati. Razlog tome su promjenjivi znakovi u njegovom dekodiranju. Nepravilno su pisane, zbunjujući se s drugim formulama.

    Zbroj kocki se proširuje kako slijedi:

    k3 + l3 = (k + 1) * (k2 - k * l + l2).

    Drugi dio jednadžbe ponekad je zbunjen kvadratna jednadžba ili proširena ekspresija kvadrata zbroja i dodati u drugu sumu, naime na "k * l" broj 2. Međutim, formula zbroj kockica otkrivena je samo na ovaj način. Dopustimo da dokažemo jednakost desnih i lijevih dijelova.

    Idemo suprotno, to jest, pokušat ćemo pokazati da druga polovica (k + l) * (k2 - k * l + l2) jednaka je izrazu k3 + l3.

    Otvaramo zagrade, umnožavamo summente. Da biste to učinili, prvo pomnožite "k" svakim izrazom drugog izraza:

    k * (k2 - k * l + k2) = k * l2 - k * (k * l) + k * (l2);

    onda na isti način obavljamo akciju s nepoznatim "l":

    l * (k2 - k * l + k2) = l * k2 - l * (k * l) + l * (l2);

    pojednostavljujemo rezultirajuću ekspresiju formule zbroj kockica, otvorimo zagrade, a istovremeno dajemo slične pojmove:

    (k3 - k2* l + k * l2) + (l * k2 - l2* k + l3) = k3 - k2l + kl2+ Lk2 - lk2 + l3 = k3 - k2l + k2l + kl2- KL2 + l3 = k3 + l3.

    Ovaj je izraz jednak izvornoj verziji formule zbroj kocke, a to smo htjeli pokazati.

    kocka formula zbroja

    Pronašli smo dokaz za izraz3 - t3. Ova matematička formula smanjene množenja naziva se razlika u kockama. Objavljeno je kako slijedi:

    a3 - t3 = (s - t) * (s2 + t * s + t2).



    Slično tome, kao u prethodnom primjeru, dokazavamo korespondenciju između desnih i lijevih dijelova. Da bismo to učinili, proširujemo zagrade, množenjem pojmova:

    za nepoznate "s":

    s * (s2 + s * t + t2) = (s3 + a2t + st2);

    za nepoznat "t":

    t * (s2 + s * t + t2) = (s2t + st2 + t3);

    kada pretvaramo i širimo zagrade određene razlike, dobivamo:

    a3 + a2t + st2 - s2t - s2t - t3 = s3 + a2t-s2t - st2+st2- t3= s3 - t3 - što je trebalo dokazati.

    Kako bi se sjetili znakova koji se postavljaju prilikom otvaranja takvog izraza, potrebno je obratiti pažnju na znakove između pojmova. Dakle, ako je netko nepoznat je odvojen od drugog matematičkog simbola „-”, a zatim je u prvom nosaču će biti negativan, a drugi - dva plus. Ako se između kocke znak „+”, a zatim, odnosno, prvi množitelj će se sastojati plus i minus drugi i onda plus.

    To se može prikazati u obliku male sheme:

    a3 - t3 → ("minus") * ("plus" "plus");

    k3 + l3 → ("plus") * ("minus" "plus").

    formula zbroj kockica

    Razmotrimo primjer:

    S obzirom na izraz (w - 2)3 + 8. Otvorite zagrade.

    rješenje:

    (W - 2)3 + 8 može biti prikazan u obliku (w - 2)3 + 23

    Prema tome, kao zbroj kockica, ovaj se izraz može raspasti prema formuli skraćenog umnažanja:

    (w-2 + 2) * ((w-2)2 - 2 * (w-2) + 22);

    Zatim pojednostavljujemo izraz:

    w * (w2 - 4w + 4 - 2w + 4 + 4) = w * (w2 - 6w + 12) = w3 - 6w2 +12W.

    U ovom slučaju, prvi dio (w-2)3 također se može smatrati kockom razlike:

    (H - d)3 = h3 - 3 * h2* d + 3 * h * d2 - d3.

    Zatim, ako ga otvorite pomoću ove formule, dobivate:

    (W - 2)3 = w3 - 3 x w2 * 2 + 3 * w * 22 - 23 = w3 - 6 x w2 + 12w - 8.

    Ako je dodate drugi dio izvornog primjera, odnosno "+8", rezultat je sljedeći:

    (W - 2)3 + 8 = w3 - 3 x w2 * 2 + 3 * w * 22 - 23 + 8 = w3 - 6 x w2 + 12W.

    Tako smo pronašli rješenje ovog primjera na dva načina.

    Potrebno je zapamtiti da je marljivost i pažljivost ključ uspjeha u bilo kojem poslu, uključujući rješavanje matematičkih primjera.

    Dijelite na društvenim mrežama:

    Povezan
    Sinus, kosinus, tangens: što je to? Kako pronaći sinus, kosinus i tangent?Sinus, kosinus, tangens: što je to? Kako pronaći sinus, kosinus i tangent?
    Prihodi i dobit: koja je razlika između dva ekonomska konceptaPrihodi i dobit: koja je razlika između dva ekonomska koncepta
    Kako se umnožiti u exceluKako se umnožiti u excelu
    Kako napisati formulu u programu Excel: korak-po-korak upute, značajke i preporukeKako napisati formulu u programu Excel: korak-po-korak upute, značajke i preporuke
    Koeficijent tekuće likvidnosti: formule i definicijeKoeficijent tekuće likvidnosti: formule i definicije
    Što je jednakost? Prvi znak i načela jednakostiŠto je jednakost? Prvi znak i načela jednakosti
    Spearmanov koeficijent korelacije. Koeficijent rangiranja korelacije SpearmanaSpearmanov koeficijent korelacije. Koeficijent rangiranja korelacije Spearmana
    Osnovne formule molekularne fizikeOsnovne formule molekularne fizike
    Geometrijska progresija. Primjer s otopinomGeometrijska progresija. Primjer s otopinom
    Kako pronaći područje četverokuta?Kako pronaći područje četverokuta?
    » » Zbroj kocki i njihova razlika: formule smanjene množenja
    LiveInternet